A Deep Learning–Based Velocity Dealiasing Algorithm Derived from the WSR-88D Open Radar Product Generator

Author:

Veillette Mark S.1,Kurdzo James M.1,Stepanian Phillip M.1,McDonald Joseph1,Samsi Siddharth1,Cho John Y. N.1

Affiliation:

1. a Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts

Abstract

Abstract Radial velocity estimates provided by Doppler weather radar are critical measurements used by operational forecasters for the detection and monitoring of life-impacting storms. The sampling methods used to produce these measurements are inherently susceptible to aliasing, which produces ambiguous velocity values in regions with high winds and needs to be corrected using a velocity dealiasing algorithm (VDA). In the United States, the Weather Surveillance Radar-1988 Doppler (WSR-88D) Open Radar Product Generator (ORPG) is a processing environment that provides a world-class VDA; however, this algorithm is complex and can be difficult to port to other radar systems outside the WSR-88D network. In this work, a deep neural network (DNN) is used to emulate the two-dimensional WSR-88D ORPG dealiasing algorithm. It is shown that a DNN, specifically a customized U-Net, is highly effective for building VDAs that are accurate, fast, and portable to multiple radar types. To train the DNN model, a large dataset is generated containing aligned samples of folded and dealiased velocity pairs. This dataset contains samples collected from WSR-88D Level-II and Level-III archives and uses the ORPG dealiasing algorithm output as a source of truth. Using this dataset, a U-Net is trained to produce the number of folds at each point of a velocity image. Several performance metrics are presented using WSR-88D data. The algorithm is also applied to other non-WSR-88D radar systems to demonstrate portability to other hardware/software interfaces. A discussion of the broad applicability of this method is presented, including how other Level-III algorithms may benefit from this approach. Significance Statement Accurate and timely estimates of wind within storms are critically important for a number of applications, including severe storm nowcasting, maritime operational planning, aviation forecasting, and public safety coordination. Velocity aliasing is a common artifact that requires data quality control. While velocity dealiasing algorithms (VDAs) have been developed for decades, they remain a computationally complex and challenging problem. This paper presents an application of deep neural networks (DNNs) to increase the computational efficiency and portability of VDAs. A DNN is trained to emulate an operational algorithm, and performance is quantified over a large dataset. This work gives a convincing example of the benefits that deep learning can provide for radar algorithms, and future work highlighting these opportunities is discussed.

Funder

U.S. Air Force

Publisher

American Meteorological Society

Reference72 articles.

1. Agrawal, S., L. Barrington, C. Bromberg, J. Burge, C. Gazen, and J. Hickey, 2019: Machine learning for precipitation nowcasting from radar images. arXiv, 1912.12132v1, https://doi.org/10.48550/arXiv.1912.12132.

2. Mobile ground-based SMART radar observations and wind retrievals during the landfall of Hurricane Harvey (2017);Alford, A. A.,2019

3. An integrated damage, visual, and radar analysis of the 2013 Moore, Oklahoma, EF5 tornado;Atkins, N. T.,2014

4. Hurricane Florence (2018): Long duration single- and dual-Doppler observations and wind retrievals during landfall;Biggerstaff, M. I.,2021

5. Bisong, E., 2019: Tensorflow 2.0 and keras. Building Machine Learning and Deep Learning Models on Google Cloud Platform, Springer, 347–399.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3