Probing the Explainability of Neural Network Cloud-Top Pressure Models for LEO and GEO Imagers

Author:

White Charles H.1ORCID,Heidinger Andrew K.2,Ackerman Steven A.3

Affiliation:

1. a Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

2. b NOAA/NESDIS, Madison, Wisconsin

3. c Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract Satellite low-Earth-orbiting (LEO) and geostationary (GEO) imager estimates of cloud-top pressure (CTP) have many applications in both operations and in studying long-term variations in cloud properties. Recently, machine learning (ML) approaches have shown improvement upon physically based algorithms. However, ML approaches, and especially neural networks, can suffer from a lack of interpretability, making it difficult to understand what information is most useful for accurate predictions of cloud properties. We trained several neural networks to estimate CTP from the infrared channels of the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Advanced Baseline Imager (ABI). The main focus of this work is assessing the relative importance of each instrument’s infrared channels in neural networks trained to estimate CTP. We use several ML explainability methods to offer different perspectives on feature importance. These methods show many differences in the relative feature importance depending on the exact method used, but most agree on a few points. Overall, the 8.4- and 8.6-μm channels appear to be the most useful for CTP estimation on ABI and VIIRS, respectively, with other native infrared window channels and the 13.3-μm channel playing a moderate role. Furthermore, we find that the neural networks learn relationships that may account for properties of clouds such as opacity and cloud-top phase that otherwise complicate the estimation of CTP. Significance Statement Model interpretability is an important consideration for transitioning machine learning models to operations. This work applies several explainability methods in an attempt to understand what information is most important for estimating the pressure level at the top of a cloud from satellite imagers in a neural network model. We observe much disagreement between approaches, which motivates further work in this area but find agreement on the importance of channels in the infrared window region around 8.6 and 10–12 μm, informing future cloud property algorithm development. We also find some evidence suggesting that these neural networks are able to learn physically relevant variability in radiation measurements related to key cloud properties.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3