Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems

Author:

Geerts Bart1,Grasmick Coltin1,Rauber Robert M.2,Zaremba Troy J.2,Xue Lulin3,Friedrich Katja4

Affiliation:

1. a Department of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

2. b Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

3. c National Center for Atmospheric Research, Boulder, Colorado

4. d Department of Atmospheric and Ocean Sciences, University of Colorado Boulder, Boulder, Colorado

Abstract

Abstract Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges. Significance Statement Mountains in the midlatitude belt and elsewhere receive more precipitation than the surrounding lowlands. The mountain terrain often is complex, and it remains unclear exactly where this precipitation enhancement occurs, because weather radars are challenged by beam blockage and the gauge network is too sparse to capture the precipitation heterogeneity over complex terrain. This study uses airborne profiling radar and high-resolution numerical simulations for four winter storms over a series of ridges in Idaho. One key finding is that while instantaneous airborne radar transects of the cross-mountain flow, vertical drafts, and reflectivity contain much transient small-scale information, time-averaged transects look very much like the model transects. The model indicates substantial surface precipitation enhancement over terrain, peaking over and just downwind of individual ridges. Radar observations suggest less enhancement, but the radar-based assessment is uncertain. The second key conclusion is that, even though orographic gravity waves are felt all the way up into the upper troposphere, the orographic precipitation enhancement is due to processes very close to the terrain.

Funder

Division of Atmospheric and Geospace Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference49 articles.

1. Orographic precipitation across an island in southern Norway: Model evaluation of time-step precipitation;Barstad, I.,2013

2. A case study of cloud-top Kelvin–Helmholtz waves near the dendritic growth zone;Cann, M. D.,2022

3. Large-eddy simulations of the impact of ground-based glaciogenic seeding on shallow orographic convection: A case study;Chu, X.,2017

4. Trapping of low-level internal gravity waves;Crook, N. A.,1988

5. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States;Daly, C.,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3