Atmospheric Boundary Layers over an Oceanic Eddy

Author:

Sullivan Peter P.1ORCID,McWilliams James C.2

Affiliation:

1. a National Center for Atmospheric Research, Boulder, Colorado

2. b Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract Imagery and numerical modeling show an abundance of submesoscale oceanic eddies in the upper ocean. Large-eddy simulation (LES) is used to elucidate eddy impacts on the atmospheric boundary layer (ABL) forced by winds, convection, and an eddy with varying radius; the maximum azimuthal eddy speed is 1 m s−1. Simulations span the unstable regime −1/L = [0, ∞], where L is the Monin–Obukhov (M–O) stability parameter. A linearized Ekman model and the LES couple ABL winds to an eddy through rough-wall M–O boundary conditions. The eddy currents cause a surface stress anomaly that induces Ekman pumping in a dipole horizontal pattern. The dipole is understood as a consequence of surface winds aligned or opposing surface currents. In free convection a vigorous updraft is found above the eddy center and persists over the ABL depth. Heterogeneity in surface temperature flux is responsible for the full ABL impact. With winds and convection, current stress coupling generates a dipole in surface temperature flux even with constant sea surface temperature. Wind, pressure, and temperature anomalies are sensitive to an eddy under light winds. The eddy impact on ABL secondary circulations is on the order of the convective velocity scale but grows with increasing current speed, decreasing wind, or increasing convection. Flow past an isolated eddy develops a coherent ABL “wake” and secondary circulations for at least five eddy radii downwind. Kinetic energy exchanges by wind work indicate an eddy-killing effect on the oceanic eddy current, but only a spatial rearrangement of the atmospheric wind work.

Funder

National Oceanic and Atmospheric Administration

Office of Naval Research

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. Uncovering air-sea interaction in oceanic submesoscale frontal regions using high-resolution satellite observations;Ayet, A.,2021

2. Turbulent transfer in the atmospheric surface layer;Businger, J. A.,1972

3. Global observations of nonlinear mesoscale eddies;Chelton, D. B.,2011

4. The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction;Chen, S. S.,2007

5. Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large-eddy simulations;Conzemius, R. J.,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3