Scaling Approaches to Quasigeostrophic Theory for Moist, Precipitating Air

Author:

Bäumer Daniel1,Hittmeir Sabine1,Klein Rupert2

Affiliation:

1. a Fakultät für Mathematik, Universität Wien, Vienna, Austria

2. b FB Mathematik und Informatik, Freie Universität Berlin, Berlin, Germany

Abstract

Abstract Quasigeostrophic (QG) theory is of fundamental importance in the study of large-scale atmospheric flows. In recent years, there has been growing interest in extending the classical QG plus Ekman friction layer model (QG–Ekman) to systematically include additional physical processes known to significantly contribute to real-life weather phenomena. This paper lays the foundation for combining two of these developments, namely, Smith and Stechmann’s family of precipitating quasigeostrophic (PQG) models on the one hand, and the extension of QG–Ekman for dry air by a strongly diabatic layer (DL) of intermediate height (QG–DL–Ekman) on the other hand. To this end, Smith and Stechmann’s PQG equations for soundproof motions are first corroborated within a general asymptotic modeling framework starting from a full compressible flow model. The derivations show that the PQG model family is naturally embedded in the asymptotic hierarchy of scale-dependent atmospheric flow models introduced by one of the present authors. Particular emphasis is then placed on an asymptotic scaling regime for PQG that accounts for a generic Kessler-type bulk microphysics closure and is compatible with QG–DL–Ekman theory. The detailed derivation of a moist QG–DL–Ekman model is deferred to a future publication.

Funder

Austrian Science Fund

Deutsche Forschungsgemeinschaft

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference28 articles.

1. Potential vorticity conservation, hydrostatic adjustment, and the anelastic approximation;Bannon, P. R.,1995

2. Cotton, W., G. Bryan, and S. van den Heever, 2011: Storm and Cloud Dynamics. 2nd ed. Elsevier, 820 pp.

3. Baroclinic waves with parameterized effects of moisture interpreted using Rossby wave components;De Vries, H.,2010

4. Evans, L., 2010: Partial Differential Equations. 2nd ed. American Mathematical Society, 749 pp.

5. Observed microphysical structure of midlevel, mixed-phase clouds;Fleishauer, R.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3