Shallow Cumulus Entrainment Dynamics in a Sheared Environment

Author:

McMichael Lucas A.1ORCID,Mechem David B.1,Heus Thijs2

Affiliation:

1. a University of Kansas, Lawrence, Kansas

2. b Cleveland State University, Cleveland, Ohio

Abstract

Abstract Vertical wind shear has long been known to tilt convective towers and reduce thermal ascent rates. The purpose of this study is to better understand the physical mechanisms responsible for reduced ascent rates in shallow convection. In particular, the study focuses on cloud-edge mass flux to assess how shear impacts mass-flux profiles of both the ensemble and individual clouds of various depths. A compositing algorithm is used to distill large-eddy simulation (LES) output to focus on up- and down-shear cloud edges that are not influenced by complex cloud geometry or nearby clouds. A direct entrainment algorithm is used to estimate the mass flux through the cloud surface. We find that the dynamics on the up- and down-shear sides are fundamentally different, with the entrainment of environmental momentum and dilution of buoyancy being primarily responsible for the reduced down-shear ascent rates. Direct estimates of fluid flow through the cloud interface indicate a counter-shear organized flow pattern that entrains on the down-shear side and detrains on the up-shear side, resulting from the subcloud shear being lifted into the cloud layer by the updraft. In spite of organized regions of entrainment and detrainment, the overall net lateral mass flux remains unchanged with respect to the no shear run, with weak detrainment present throughout cloud depth.

Funder

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3