Compensation between Resolved Wave Forcing and Parameterized Orographic Gravity Wave Drag in the Northern Hemisphere Winter Stratosphere Revealed in NCEP CFS Reanalysis Data

Author:

Yoo Ji-Hee1ORCID,Chun Hye-Yeong1

Affiliation:

1. a Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Abstract

Abstract Compensation between the resolved wave (RW) forcing and the parameterized orographic gravity wave drag (OGWD) accompanying barotropic/baroclinic (BT/BC) instability in the realistic atmosphere is investigated using Climate Forecast System Reanalysis data in the Northern Hemisphere winter stratosphere. When sufficiently narrow and/or strong negative OGWD drives instability, RWs are generated in situ, providing positive Eliassen–Palm flux divergence that compensates for the parameterized OGWD enhancement; this is consistent with the findings of previous studies based on the idealized general circulation models. However, dependence of the compensation rate on RW forcing differs from the nearly complete compensation in the previous studies, implying that an additional mechanism operates for the compensation: the refractive-index modification by BT/BC instability. The negative meridional gradient of the quasigeostrophic potential vorticity leads to the negative refractive index squared for RWs with phase speeds less than the zonal-mean zonal wind. This prevents RWs from entering the destabilized areas, resulting in the divergence of Eliassen–Palm fluxes that cancels out the parameterized OGWD perturbation. Although both mechanisms act simultaneously, the refractive-index modification plays an important role in the compensation processes in the stratosphere where RWs are dominated by the planetary-scale waves.

Funder

National Research Foundation of Korea

Global PhD Fellowship Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference24 articles.

1. Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

2. Barenblatt, G. I., and B. G. Isaakovich, 1996: Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics. Vol. 14. Cambridge University Press, 412 pp.

3. Multimodel climate and variability of the stratosphere;Butchart, N.,2011

4. Compensation between resolved and unresolved wave driving in the stratosphere: Implications for downward control;Cohen, N. Y.,2013

5. What drives the Brewer–Dobson circulation?;Cohen, N. Y.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3