Balanced Convective Circulations in a Stratified Atmosphere. Part I: A Framework for Assessing Radiation, the Coriolis Force, and Drag

Author:

Marsico David H.1,Biello Joseph A.1,Igel Matthew R.2

Affiliation:

1. a Department of Mathematics, University of California, Davis, Davis, California

2. b Department of Land, Air and Water Resources, University of California, Davis, Davis, California

Abstract

Abstract The so-called traditional approximation, wherein the component of the Coriolis force proportional to the cosine of latitude is ignored, is frequently made in order to simplify the equations of atmospheric circulation. For velocity fields whose vertical component is comparable to their horizontal component (such as convective circulations), and in the tropics where the sine of latitude vanishes, the traditional approximation is not justified. We introduce a framework for studying the effect of diabatic heating on circulations in the presence of both traditional and nontraditional terms in the Coriolis force. The framework is intended to describe steady convective circulations on an f plane in the presence of radiation and momentum damping. We derive a single elliptic equation for the horizontal velocity potential, which is a generalization of the weak temperature gradient (WTG) approximation. The elliptic operator depends on latitude, radiative damping, and momentum damping coefficients. We show how all other dynamical fields can be diagnosed from this velocity potential; the horizontal velocity induced by the Coriolis force has a particularly simple expression in terms of the velocity potential. Limiting examples occur at the equator, where only the nontraditional terms are present, at the poles, where only the traditional terms appear, and in the absence of radiative damping where the WTG approximation is recovered. We discuss how the framework will be used to construct dynamical, nonlinear convective models, in order to diagnose their consequent upscale momentum and temperature fluxes.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference25 articles.

1. Tropical precipitation evolution in a buoyancy-budget framework;Adames, Á. F.,2021

2. A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation;Bretherton, C. S.,2002

3. Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance;Chikira, M.,2014

4. Emergence and secondary instability of Ekman layer rolls;Dubos, T.,2008

5. On integrals of the hydrodynamical equations, which express vortex-motion;Helmholtz, H.,1867

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3