Diurnal MCSs Precede the Genesis of Tropical Cyclone Mora (2017): The Role of Convectively Forced Gravity Waves

Author:

Chen Xingchao12ORCID,Leung L. Ruby3,Feng Zhe3,Yang Qiu3

Affiliation:

1. a Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

2. b Center for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

3. c Atmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland, Washington

Abstract

Abstract A novel high-resolution regional reanalysis is used to investigate the mesoscale processes that preceded the formation of Tropical Cyclone (TC) Mora (2017). Both satellite observations and the regional reanalysis show early morning mesoscale convective systems (MCSs) persistently initiated and organized in the downshear quadrant of the preexisting tropical disturbance a few days prior to the genesis of TC Mora. The diurnal MCSs gradually enhanced the meso-α-scale vortex near the center of the preexisting tropical disturbance through vortex stretching, providing a vorticity-rich and moist environment for the following burst of deep convection and enhancement of the meso-β-scale vortex. The regional reanalysis shows that the gravity waves that radiated from afternoon convection over the northern coast of the Bay of Bengal might play an important role in modulating the diurnal cycle of pregenesis MCSs. The diurnal convectively forced gravity waves increased the tropospheric stability, reduced the column saturation fraction, and suppressed deep convection within the preexisting tropical disturbance from noon to evening. A similar quasi-diurnal cycle of organized deep convection prior to TC genesis has also been observed over other basins. However, modeling studies are needed to conclusively demonstrate the relationships between the gravity waves and pregenesis diurnal MCSs. Also, whether diurnal gravity waves play a similar role in modulating the pregenesis deep convection in other TCs is worth future investigations. Significance Statement Tropical cyclogenesis is a process by which a less organized weather system in the tropics develops into a tropical cyclone (TC). Observations indicate that thunderstorms occurring prior to the tropical cyclogenesis often show a distinct quasi-diurnal cycle, while the related physical mechanisms are still unclear. In this study, we used a novel high-resolution dataset to investigate the diurnal thunderstorms occurring prior to the genesis of TC Mora (2017). We find that the pregenesis diurnal thunderstorms played a crucial role in spinning up the circulation of the atmosphere and provided a favorable environment for the rapid formation of Mora. It is likely that gravity waves emitted by afternoon thunderstorms over the inland region were responsible for regulating the diurnal variation of pregenesis thunderstorms over the ocean.

Funder

Biological and Environmental Research

Office of Naval Research

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

1. Convective and stratiform components of the precipitation-moisture relationship;Ahmed, F.,2015

2. Reverse engineering the tropical precipitation–buoyancy relationship;Ahmed, F.,2018

3. Mesoscale processes during the genesis of Hurricane Karl (2010);Bell, M. M.,2019

4. The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study;Bister, M.,1997

5. Simulation and interpretation of the genesis of Tropical Storm Gert (2005) as part of the NASA Tropical Cloud Systems and Processes Experiment;Braun, S. A.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3