Estimating Phase Transition Rates in Shallow Cumulus Clouds from Mass Flux. Part I: Theory and Numerical Simulations

Author:

Kogan Yefim L.1ORCID

Affiliation:

1. a NorthWest Research Associates, Redmond, Washington

Abstract

Abstract The system of trade wind cumulus clouds observed during the RICO field project was simulated by an LES model in a domain of the size of a mesoscale model grid. More than 2000 clouds were analyzed by stratifying them by their cloud-top heights. The investigation was focused on phase transition rates (TR), which in warm tropical clouds are represented by the processes of condensation/evaporation. We previously demonstrated, based on LES data, that a nearly perfect correlation (R = 0.99) exists between upward mass flux (MFP) and condensation rate (CR), and that the correlation between MFP and evaporation rate (ER) is only slightly lower (R = 0.98). The strong dependence of TR on MFP and the linear relationship between them were explained by applying condensation theory and the concept of “quasi-steady” supersaturation. The LES-derived slope of the linear TR–MFP relationship agreed with its theoretical value, with an error of less than 5%. This result implies that supersaturation in clouds, on average, varies within a few percentage points of its quasi-steady value. In our analysis we considered parameters characterizing cloud as a whole, that is, parameters integrated over the cloud volume. However, condensation theory and LES data show that the linear fit is applicable to local variables and therefore may be integrated to obtain relationships for horizontally averaged variables. Expanding the TR–MFP relationship to vertically dependent variables may provide the framework for development of subgrid-scale latent heat release parameterization. Significance Statement This study investigated condensation/evaporation processes in tropical cumulus clouds. The energy exchanged during these processes is an important driving force behind a wide range of atmospheric phenomena. We found theoretically, and confirmed in computer simulations, that the rate of condensation/evaporation can be expressed as a linear function of the cloud vertical velocity. This finding suggests a new approach to calculate cloud energy transformations in numerical weather prediction models.

Funder

Office of Naval Research Global

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3