Evolution of the U.S. Tornado Database: 1954–2003

Author:

Verbout Stephanie M.1,Brooks Harold E.2,Leslie Lance M.1,Schultz David M.3

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

3. NOAA/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Over the last 50 yr, the number of tornadoes reported in the United States has doubled from about 600 per year in the 1950s to around 1200 in the 2000s. This doubling is likely not related to meteorological causes alone. To account for this increase a simple least squares linear regression was fitted to the annual number of tornado reports. A “big tornado day” is a single day when numerous tornadoes and/or many tornadoes exceeding a specified intensity threshold were reported anywhere in the country. By defining a big tornado day without considering the spatial distribution of the tornadoes, a big tornado day differs from previous definitions of outbreaks. To address the increase in the number of reports, the number of reports is compared to the expected number of reports in a year based on linear regression. In addition, the F1 and greater Fujita-scale record was used in determining a big tornado day because the F1 and greater series was more stationary over time as opposed to the F2 and greater series. Thresholds were applied to the data to determine the number and intensities of the tornadoes needed to be considered a big tornado day. Possible threshold values included fractions of the annual expected value associated with the linear regression and fixed numbers for the intensity criterion. Threshold values of 1.5% of the expected annual total number of tornadoes and/or at least 8 F1 and greater tornadoes identified about 18.1 big tornado days per year. Higher thresholds such as 2.5% and/or at least 15 F1 and greater tornadoes showed similar characteristics, yet identified approximately 6.2 big tornado days per year. Finally, probability distribution curves generated using kernel density estimation revealed that big tornado days were more likely to occur slightly earlier in the year and have a narrower distribution than any given tornado day.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference22 articles.

1. Some aspects of the international climatology of tornadoes by damage classification.;Brooks;Atmos. Res.,2001

2. Brooks, H. E., and J. P.Craven, 2002: A database of proximity soundings for significant severe thunderstorms, 1957–1993. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 639–642.

3. Deaths in the 3 May 1999 Oklahoma City tornado from a historical perspective.;Brooks;Wea. Forecasting,2002

4. Climatological estimates of local daily tornado probability for the United States.;Brooks;Wea. Forecasting,2003

5. Bruening, S. L., M. P.Kay, and H. E.Brooks, 2002: A new perspective on the climatology of tornadoes in the United States. Preprints, 16th Conf. on Probability and Statistics, Orlando, FL, Amer. Meteor. Soc., J96–J103.

Cited by 226 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3