A Novel Lightweight Low-Power Dual-Beam Ozone Photometer Utilizing Solid-State Optoelectronics

Author:

Kalnajs Lars E.1,Avallone Linnea M.1

Affiliation:

1. Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado

Abstract

Abstract Recent advances in semiconductor materials and fabrication techniques have allowed the development of light-emitting diodes (LEDs) with wavelengths extending down into the UV-C region (λ < 280 nm). A new ozone photometer has been developed utilizing these novel light sources. The application of solid-state technology to the proven dual-beam UV absorption technique has improved instrument performance while reducing power consumption and weight compared to existing instrumentation. The newly developed instrument is expected to have an accuracy of 1% at surface level pressure, a resolution better than 1 ppb, and measurement rates up to 1 Hz over the range of ozone mixing ratios encountered from the earth’s surface to the middle stratosphere. Size, weight, and power consumption have also been significantly reduced, with a mass of 3 kg and a power consumption of less than 5 W. Initial development is focused on an instrument suitable for measurements from autonomous platforms and in harsh environments; however, the technology is highly adaptable to other applications.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3