Vertical Variability of Near-Surface Salinity in the Tropics: Consequences for L-Band Radiometer Calibration and Validation

Author:

Henocq Claire1,Boutin Jacqueline2,Reverdin Gilles2,Petitcolin François3,Arnault Sabine4,Lattes Philippe5

Affiliation:

1. LOCEAN/IPSL, Paris, and ACRI-St, Sophia-Antipolis, France

2. LOCEAN/IPSL, and CNRS, Paris, France

3. ACRI-St, Sophia-Antipolis, France

4. LOCEAN/IPSL, and IRD, Paris, France

5. LOCEAN/IPSL, Paris, France

Abstract

Abstract Two satellite missions are planned to be launched in the next two years; the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and the National Aeronautics and Space Administration (NASA) Aquarius missions aim at detecting sea surface salinity (SSS) using L-band radiometry (1.4 GHz). At that frequency, the skin depth is on the order of 1 cm. However, the calibration and validation of L-band-retrieved SSS will be done with in situ measurements, mainly taken at 5-m depth. To anticipate and understand vertical salinity differences in the first 10 m of the ocean surface layer, in situ vertical profiles are analyzed. The influence of rain events is studied. Tropical Atmosphere Ocean (TAO) moorings, the most comprehensive dataset, provide measurements of salinity taken simultaneously at 1, 5, and 10 m and measurements of rain rate. Then, observations of vertical salinity differences, sorted according to their vertical levels, are expanded through the tropical band (30°S–30°N) using thermosalinographs (TSG), floats, expendable conductivity–temperature–depth (XCTD), and CTD data. Vertical salinity differences higher than 0.1 pss are observed in the Pacific, Atlantic, and Indian Oceans, mainly between 0° and 15°N, which coincides with the average position of the intertropical convergence zone (ITCZ). Some differences exceed 0.5 pss locally and persist for more than 10 days. A statistical approach is developed for the detection of large vertical salinity differences, knowing the history of rain events and the simultaneous wind intensity, as estimated from satellite measurements.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3