Evaluation of a Mesoscale Short-Range Ensemble Forecast System over the Northeast United States

Author:

Jones Matthew S.1,Colle Brian A.1,Tongue Jeffrey S.2

Affiliation:

1. Institute for Terrestrial and Planetary Atmospheres, Stony Brook University, Stony Brook, New York

2. NOAA/National Weather Service, Upton, New York

Abstract

Abstract A short-range ensemble forecast system was constructed over the northeast United States down to 12-km grid spacing using 18 members from the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). The ensemble consisted of 12 physics members with varying planetary boundary layer schemes and convective parameterizations as well as seven different initial conditions (ICs) [five National Centers for Environmental Prediction (NCEP) Eta-bred members at 2100 UTC and the 0000 UTC NCEP Global Forecast System (GFS) and Eta runs]. The full 18-member ensemble (ALL) was verified at the surface for the warm (May–September 2003) and cool (October 2003–March 2004) seasons. A randomly chosen subset of seven physics (PHS) members at each forecast hour was used to quantitatively compare with the seven IC members. During the warm season, the PHS ensemble predictions for surface temperature and wind speed had more skill than the IC ensemble and a control (shared PHS and IC member) run initialized 12 h later (CTL12). During the cool and warm seasons, a 14-day running-mean bias calibration applied to the ALL ensemble (ALLBC) added 10%–30% more skill for temperature, wind speed, and sea level pressure, with the ALLBC far outperforming the CTL12. For the 24-h precipitation, the PHS ensemble had comparable probabilistic skill to the IC ensemble during the warm season, while the IC subensemble was more skillful during the cool season. All ensemble members had large diurnal surface biases, with ensemble variance approximating ensemble uncertainty only for wind direction. Selection of ICs was also important, because during the cool season the NCEP-bred members introduced large errors into the IC ensemble for sea level pressure, while none of the subensembles (PHS, IC, or ALL) outperformed the GFS–MM5 for sea level pressure.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference39 articles.

1. Cluster analysis of a multimodel ensemble data from SAMEX.;Alhamed;Mon. Wea. Rev.,2002

2. The general question of predictability.;Anthes,1986

3. A new convective adjustment scheme. Part I: Observational and theoretical basis.;Betts;Quart. J. Roy. Meteor. Soc.,1986

4. Verification of forecasts expressed in terms of probability.;Brier;Mon. Wea. Rev.,1950

5. The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5.;Bright;Wea. Forecasting,2002

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3