Ice Multiplication by Breakup in Ice–Ice Collisions. Part I: Theoretical Formulation

Author:

Phillips Vaughan T. J.1,Yano Jun-Ichi2,Khain Alexander3

Affiliation:

1. Department of Physical Geography, University of Lund, Lund, Sweden

2. CNRM UMR3589, Météo-France, and CNRS, Toulouse, France

3. Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel

Abstract

Abstract For decades, enhancement of ice concentrations above those of active ice nucleus aerosols was observed in deep clouds with tops too warm for homogeneous freezing, indicating fragmentation of ice (multiplication). Several possible mechanisms of fragmentation have been suggested from laboratory studies, and one of these involves fragmentation in ice–ice collisions. In this two-part paper, the role of breakup in ice–ice collisions in a convective storm consisting of many cloud types is assessed with a modeling approach. The colliding ice particles can belong to any microphysical species, such as crystals, snow, graupel, hail, or freezing drops. In the present study (Part I), a full physical formulation of initiation of cloud ice by mechanical breakup in collisions involving snow, graupel, and/or hail is developed based on an energy conservation principle. Theoretically uncertain parameters are estimated by simulating laboratory and field experiments already published in the literature. Here, collision kinetic energy (CKE) is the fundamental governing variable of fragmentation in any collision, because it measures the energy available for breakage by work done to create the new surface of fragments. The developed formulation is general in the sense that it includes all the types of fragmentation observed in previous published studies and encompasses collisions of either snow or crystals with graupel/hail, collisions among only graupel/hail, and collisions among only snow/crystals. It explains the observed dependencies on CKE, size, temperature, and degree of prior riming.

Funder

Division of Atmospheric and Geospace Sciences

Biological and Environmental Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3