Affiliation:
1. Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany
Abstract
Abstract
This study addresses the heat budget of the mesosphere and lower thermosphere with regard to the energy deposition of upward-propagating waves. To this end, the energetics of gravity waves are recapitulated using an anelastic version of the primitive equations. This leads to an expression for the energy deposition of waves that is usually resolved in general circulation models. The energy deposition is shown to be mainly due to the frictional heating and, additionally, due to the negative buoyancy production of wave kinetic energy. The frictional heating includes contributions from horizontal and vertical momentum diffusion, as well as from ion drag. This formalism is applied to analyze results from a mechanistic middle-atmosphere general circulation model that includes energetically consistent parameterizations of diffusion, gravity waves, and ion drag. This paper estimates 1) the wave driving and energy deposition of thermal tides, 2) the model response to the excitation of thermal tides, and 3) the model response to the combined energy deposition by parameterized gravity waves and resolved waves. It is found that thermal tides give rise to a significant energy deposition in the lower thermosphere. The temperature response to thermal tides is positive. It maximizes at polar latitudes in the lower thermosphere as a result of poleward circulation branches that are driven by the predominantly westward Eliassen–Palm flux divergence of the tides. In addition, thermal tides give rise to a downward shift and reduction of the gravity wave drag in the upper mesosphere. Including the energy deposition in the model causes a substantial warming in the upper mesosphere and lower thermosphere.
Funder
Leibniz Institute of Atmospheric Physics at the University of Rostock
Publisher
American Meteorological Society
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献