Drag Produced by Waves Trapped at a Density Interface in Nonhydrostatic Flow over an Axisymmetric Hill

Author:

Teixeira Miguel A. C.1,Paci Alexandre2,Belleudy Anne2

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

2. CNRM, METEO-FRANCE and CNRS (UMR3589), Toulouse, France

Abstract

Abstract Linear nonhydrostatic theory is used to evaluate the drag produced by 3D trapped lee waves forced by an axisymmetric hill at a density interface. These waves occur at atmospheric temperature inversions, for example, at the top of the boundary layer, and contribute to low-level drag possibly misrepresented as turbulent form drag in large-scale numerical models. Unlike in 2D waves, the drag has contributions from a continuous range of wavenumbers forced by the topography, because the waves can vary their angle of incidence to match the resonance condition. This leads to nonzero drag for Froude numbers (Fr) both <1 and >1 and a drag maximum typically for Fr slightly below 1, with lower magnitude than in hydrostatic conditions owing to wave dispersion. These features are in good agreement with laboratory experiments using two axisymmetric obstacles, particularly for the lower obstacle, if the effects of a rigid lid above the upper layer and friction are taken into account. Quantitative agreement is less satisfactory for the higher obstacle, as flow nonlinearity increases. However, even in that case the model still largely outperforms both 3D hydrostatic and 2D nonhydrostatic theories, emphasizing the importance of both 3D and nonhydrostatic effects. The associated wave signatures are dominated by transverse waves for Fr lower than at the drag maximum, a dispersive “Kelvin ship-wave” pattern near the maximum, and divergent waves for Fr beyond the maximum. The minimum elevation at the density-interface depression existing immediately downstream of the obstacle is significantly correlated with the drag magnitude.

Funder

Seventh Framework Programme

Sixth Framework Programme

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3