Meandering Subtropical Jet and Precipitation over Summertime East Asia and the Northwestern Pacific

Author:

Horinouchi Takeshi1,Hayashi Ayumu2

Affiliation:

1. Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan

2. Graduate School of Environmental Science, Hokkaido University, Hokkaido, Japan

Abstract

Abstract It has been revealed that in summertime, precipitation is enhanced to the south of the upper-level tropopausal potential vorticity contours, which are accompanied by instantaneous jets, over the eastern coastal region of China to the northwestern Pacific. It is frequently exhibited as precipitation bands ranging in size from over a thousand to several thousands of kilometers long. In this study, an analysis was conducted to quantify the relationship depending on the phase of upper-level disturbances. With composite analysis, it is shown that the enhancement along the contours occurs at all phases; it occurs not only to the east but also to the west of the upper-level troughs, although it is weaker. The midtropospheric distributions of upwelling and the Q-vector convergence are collocated with the precipitation enhancement, suggesting the importance of dynamical induction by geostrophic flow at all phases. The effects of upper-level disturbances and low-level jets (LLJs) with a southerly component are investigated by using an idealized nondimensional quasigeostrophic model supporting latent heating. While upper-level waves induce upwelling and downwelling to the east and west, respectively, of the upper-level troughs, LLJs tend to offset the downwelling, enabling precipitation to the west too. Both in the observational composite and the idealized model with LLJ, confluence and diffluence contribute to the Q-vector convergence to induce upwelling along the subtropical jet irrespective of upper-level disturbance phases. This induction is explained as a general feature of a veered jet where geopotential isolines rotate clockwise with height without requiring wind variation along the jet.

Funder

Ministry of the Environment, Japan

Japan Society for the Promotion of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3