Radar Refractivity Retrievals in Oklahoma: Insights into Operational Benefits and Limitations

Author:

Heinselman P. L.1,Cheong B. L.2,Palmer R. D.2,Bodine D.2,Hondl K.3

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

2. School of Meteorology and Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma

3. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract The 2007 and 2008 spring refractivity experiments at KTLX investigated the potential utility of high-resolution, near-surface refractivity measurements to operational forecasting. During these experiments, forecasters at the Norman, Oklahoma, National Weather Service Forecast Office (NWSFO) assessed refractivity and scan-to-scan refractivity change fields retrieved from the Weather Surveillance Radar-1988 Doppler weather radar near Oklahoma City—Twin Lakes, Oklahoma (KTLX). Both quantitative and qualitative analysis methods were used to analyze the 41 responses from seven forecasters to a questionnaire designed to measure the impact of refractivity fields on forecast operations. The analysis revealed that forecasts benefited from the refractivity fields on 25% of the days included in the evaluation. In each of these cases, the refractivity fields provided complementary information that somewhat enhanced the forecasters’ capability to analyze the near-surface environment and boosted their confidence in moisture trends. A case in point was the ability to track a retreating dryline after its location was obscured by a weak reflectivity bloom caused by biological scatterers. Forecasters unanimously agreed, however, that the impact of this complementary information on their forecasts was too insignificant to justify its addition as an operational dataset. The applicability of these findings to other NWSFOs may be limited to locations with similar weather situations and access to surface data networks like the Oklahoma Mesonet.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. Introduction to Research in Education.;Ary,2002

2. Radio Meteorology.;Bean,1968

3. Transforming Qualitative Information: Thematic Analysis and Code Development.;Boyatzis,1998

4. The Oklahoma Mesonet: A technical overview.;Brock;J. Atmos. Oceanic Technol.,1995

5. Collaborative Adaptive Sensing of the Atmosphere (CASA): New radar system for improving analysis and forecasting of surface weather conditions.;Brotzge;Transport. Res. Record: J. Transport. Res. Board,2006

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3