Snow-to-Liquid Ratio Variability and Prediction at a High-Elevation Site in Utah’s Wasatch Mountains

Author:

Alcott Trevor I.1,Steenburgh W. James1

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Abstract

Abstract Contemporary snowfall forecasting is a three-step process involving a quantitative precipitation forecast (QPF), determination of precipitation type, and application of a snow-to-liquid ratio (SLR). The final step is often performed using climatology or algorithms based primarily on temperature. Based on a record of consistent and professional daily snowfall measurements, this study 1) presents general characteristics of SLR at Alta, Utah, a high-elevation site in interior North America with frequent winter storms; 2) diagnoses relationships between SLR and atmospheric conditions using reanalysis data; and 3) develops a statistical method for predicting SLR at the study location. The mean SLR at Alta is similar to that observed at lower elevations in the surrounding region, with substantial variability throughout the winter season. Using data from the North American Regional Reanalysis, temperature, wind speed, and midlevel relative humidity are shown to be related to SLR, with the strongest correlation occurring between SLR and near-crest-level (650 hPa) temperature. A stepwise multiple linear regression (SMLR) equation is constructed that explains 68% of the SLR variance for all events, and 88% for a high snow-water equivalent (>25 mm) subset. To test predictive ability, the straightforward SMLR approach is applied to archived 12–36-h forecasts from the National Centers for Environmental Prediction Eta/North American Mesoscale (Eta/NAM) model, yielding an improvement over existing operational SLR prediction techniques. Errors in QPF over complex terrain, however, ultimately limit skill in forecasting snowfall amount.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3