Diagnosis of the Initial and Forecast Errors in the Numerical Simulation of the Rapid Intensification of Hurricane Emily (2005)

Author:

Pu Zhaoxia1,Li Xuanli1,Zipser Edward J.1

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

Abstract

Abstract A diagnostic study is conducted to examine the initial and forecast errors in a short-range numerical simulation of Hurricane Emily’s (2005) early rapid intensification. The initial conditions and the simulated hurricane vortices using high-resolution grids (1 and 3 km), generated from the Advanced Research version of the Weather Research and Forecasting (ARW) model and its three-dimensional variational data assimilation (3DVAR) systems, are compared with the flight-level data acquired from the U.S. Air Force C-130J aircraft data. Numerical simulation results show that the model fails at predicting the actual rapid intensification of the hurricane, although the initial intensity of the vortex matches the observed intensity. Comparing the model results with aircraft flight-level data, unrealistic thermal and convective structures of the storm eyewall are found in the initial conditions. In addition, the simulated eyewall does not contract rapidly enough during the model simulation. Increasing the model’s horizontal resolution from 3 to 1 km can help the model to produce a deeper storm and also a more realistic eye structure. However, even at 1 km the model is still not able to fully resolve the inner-core structures. To provide additional insight, a set of mesoscale reanalyses is generated through the assimilation of available satellite and aircraft dropsonde data into the ARW model throughout the whole simulation period at a 6-h interval. It is found that the short-range numerical simulation of the hurricane has been greatly improved by the mesoscale reanalysis; the data assimilation helps the model to reproduce stronger wind, thermal, and convective structures of the storm, and a more realistic eyewall contraction and eye structure. Results from this study suggest that a more accurate representation of the hurricane vortex, especially the inner-core structures in the initial conditions, is necessary for a more accurate forecast of hurricane rapid intensification.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3