Amplified Upward Trend of the Joint Occurrences of Heat and Ozone Extremes in China over 2013–20

Author:

Xiao Xiang1,Xu Yangyang2,Zhang Xiaorui1,Wang Fan1,Lu Xiao3,Cai Zongwei4,Brasseur Guy5,Gao Meng6

Affiliation:

1. Department of Geography, Hong Kong Baptist University, Hong Kong, China;

2. Department of Atmospheric Sciences, Texas A&M University, College Station, Texas;

3. School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China;

4. State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China;

5. Atmospheric Chemistry Observation and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado;

6. Department of Geography, and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China

Abstract

Abstract Climate change and air pollution are two intimately interlinked global concerns. The frequency, intensity, and duration of heat waves are projected to increase globally under future climate change. A growing body of evidence indicates that health risks associated with the joint exposure to heat waves and air pollution can be greater than that due to individual factors. However, the cooccurrences of heat and air pollution extremes in China remain less explored in the observational records. Here we investigate the spatial pattern and temporal trend of frequency, intensity, and duration of cooccurrences of heat and air pollution extremes using China’s nationwide observations of hourly PM2.5 and O3, and the ERA5 reanalysis dataset over 2013–20. We identify a significant increase in the frequency of cooccurrence of wet-bulb temperature (Tw) and O3 exceedances (beyond a certain predefined threshold), mainly in the Beijing–Tianjin–Hebei (BTH) region (up by 4.7 days decade−1) and the Yangtze River delta (YRD). In addition, we find that the increasing rate (compared to the average levels during the study period) of joint exceedance is larger than the rate of Tw and O3 itself. For example, Tw and O3 coextremes increased by 7.0% in BTH, higher than the percentage increase of each at 0.9% and 5.5%, respectively. We identify same amplification for YRD. This ongoing upward trend in the joint occurrence of heat and O3 extremes should be recognized as an emerging environmental issue in China, given the potentially larger compounding impact to public health.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3