Going mobile to address emerging climate equity needs in the heterogeneous urban environment

Author:

Lamer Katia1,Luke Edward P.1,Walsh Brian Jr.1,Andrade Steven1,Mages Zackary2,Zhu Zeen2,Leghart Erin2,Treserras Bernat P.3,Emrick Ann1,Kollias Pavlos12,Vogelmann Andrew1,Schoonen Martin1

Affiliation:

1. Brookhaven National Laboratory, Upon, New York

2. Stony Brook University, Stony Brook, New York

3. McGill University, Montreal, Quebec, Canada

Abstract

Abstract The Brookhaven National Laboratory Center for Multiscale Applied Sensing (CMAS) aims to address environmental equity needs in the context of a changing climate. As a first step towards this goal, the center developed a one-of-a-kind observatory tailored to the study of highly heterogeneous urban environments. This article describes the features of the mobile observatory that enable its rapid deployment either on or off the power grid, as well as its instrument payload. Beyond its unique design, the observatory optimizes data collection within the obstacle-laden urban environment using a new smart sampling paradigm. This setup facilitated the collection of previously poorly documented environmental properties including wind profiles throughout the atmospheric column. The mobile observatory captured unique observations during its first few intensive observation periods (IOPs).. Vertical air motion and infrared temperature measurements collected along the faces of the supertall One Vanderbilt skyscraper in Manhattan, NY reveal how solar and anthropogenic heating affect wind flow and thus the venting of heat, pollution, and contaminants in urban street canyons. Also, air temperature measurements collected during travel along a 150-km transect between Upton and Manhattan, NY offer a high-resolution view of the urban heat island and reveal that temperature disparities also exist within the city across different neighborhoods. Ultimately, the datasets collected by CMAS are poised to help guide equitable urban planning by highlighting existing disparities and characterizing the impact of urban features on the urban microclimate with the goal of improving human comfort.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3