A Tale of Two Rapidly Intensifying Supertyphoons: Hagibis (2019) and Haiyan (2013)

Author:

Lin I.-I.1,Rogers Robert F.2,Huang Hsiao-Ching1,Liao Yi-Chun1,Herndon Derrick3,Yu Jin-Yi4,Chang Ya-Ting1,Zhang Jun A.5,Patricola Christina M.6,Pun Iam-Fei7,Lien Chun-Chi1

Affiliation:

1. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

2. NOAA/AOML/Hurricane Research Division, Miami, Florida

3. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

4. Department Of Earth System Science, University of California, Irvine, Irvine, California

5. NOAA/AOML/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

6. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, and Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

7. Institute of Hydrological and Ocean Sciences, National Central University, Taoyuan, Taiwan

Abstract

AbstractDevastating Japan in October 2019, Supertyphoon (STY) Hagibis was an important typhoon in the history of the Pacific. A striking feature of Hagibis was its explosive rapid intensification (RI). In 24 h, Hagibis intensified by 100 knots (kt; 1 kt ≈ 0.51 m s−1), making it one of the fastest-intensifying typhoons ever observed. After RI, Hagibis’s intensification stalled. Using the current typhoon intensity record holder, i.e., STY Haiyan (2013), as a benchmark, this work explores the intensity evolution differences of these two high-impact STYs. We found that the extremely high prestorm sea surface temperature reaching 30.5°C, deep/warm prestorm ocean heat content reaching 160 kJ cm−2, fast forward storm motion of ∼8 m s−1, small during-storm ocean cooling effect of ∼0.5°C, significant thunderstorm activity at its center, and rapid eyewall contraction were all important contributors to Hagibis’s impressive intensification. There was 36% more air–sea flux for Hagibis’s RI than for Haiyan’s. After its spectacular RI, Hagibis’s intensification stopped, despite favorable environments. Haiyan, by contrast, continued to intensify, reaching its record-breaking intensity of 170 kt. A key finding here is the multiple pathways that storm size affected the intensity evolution for both typhoons. After RI, Hagibis experienced a major size expansion, becoming the largest typhoon on record in the Pacific. This size enlargement, combined with a reduction in storm translational speed, induced stronger ocean cooling that reduced ocean flux and hindered intensification. The large storm size also contributed to slower eyewall replacement cycles (ERCs), which prolonged the negative impact of the ERC on intensification.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3