Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project

Author:

Wendisch M.11,Brückner M.1,Crewell S.22,Ehrlich A.1,Notholt J.33,Lüpkes C.44,Macke A.55,Burrows J. P.3,Rinke A.4,Quaas J.1,Maturilli M.4,Schemann V.2,Shupe M. D.66,Akansu E. F.5,Barrientos-Velasco C.5,Bärfuss K.77,Blechschmidt A.-M.3,Block K.1,Bougoudis I.3,Bozem H.88,Böckmann C.99,Bracher A.1010,Bresson H.4,Bretschneider L.711,Buschmann M.3,Chechin D. G.1212,Chylik J.2,Dahlke S.4,Deneke H.5,Dethloff K.4,Donth T.1,Dorn W.4,Dupuy R.1313,Ebell K.2,Egerer U.5,Engelmann R.5,Eppers O.1414,Gerdes R.4,Gierens R.2,Gorodetskaya I. V.1515,Gottschalk M.1,Griesche H.5,Gryanik V. M.12,Handorf D.4,Harm-Altstädter B.7,Hartmann J.4,Hartmann M.5,Heinold B.5,Herber A.4,Herrmann H.5,Heygster G.3,Höschel I.4,Hofmann Z.4,Hölemann J.4,Hünerbein A.5,Jafariserajehlou S.3,Jäkel E.1,Jacobi C.1,Janout M.4,Jansen F.1616,Jourdan O.13,Jurányi Z.4,Kalesse-Los H.1,Kanzow T.4,Käthner R.5,Kliesch L. L.2,Klingebiel M.1,Knudsen E. M.2,Kovács T.1717,Körtke W.3,Krampe D.4,Kretzschmar J.1,Kreyling D.4,Kulla B.2,Kunkel D.8,Lampert A.7,Lauer M.2,Lelli L.1818,von Lerber A.1919,Linke O.1,Löhnert U.2,Lonardi M.1,Losa S. N.2020,Losch M.4,Maahn M.1,Mech M.2,Mei L.3,Mertes S.5,Metzner E.1,Mewes D.1,Michaelis J.4,Mioche G.13,Moser M.2121,Nakoudi K.4,Neggers R.2,Neuber R.4,Nomokonova T.2,Oelker J.2222,Papakonstantinou-Presvelou I.1,Pätzold F.7,Pefanis V.22,Pohl C.3,van Pinxteren M.5,Radovan A.2,Rhein M.3,Rex M.4,Richter A.3,Risse N.2,Ritter C.4,Rostosky P.3,Rozanov V. V.3,Donoso E. Ruiz1,Saavedra Garfias P.1,Salzmann M.1,Schacht J.5,Schäfer M.1,Schneider J.11,Schnierstein N.2,Seifert P.5,Seo S.3,Siebert H.5,Soppa M. A.4,Spreen G.3,Stachlewska I. S.2323,Stapf J.1,Stratmann F.5,Tegen I.5,Viceto C.15,Voigt C.21,Vountas M.3,Walbröl A.2,Walter M.3,Wehner B.5,Wex H.5,Willmes S.2424,Zanatta M.4,Zeppenfeld S.5

Affiliation:

1. Leipziger Institut für Meteorologie, Universität Leipzig, Leipzig, Germany;

2. Institut für Geophysik und Meteorologie, Universität zu Köln, Cologne, Germany;

3. Institut für Umweltphysik, Universität Bremen, Bremen, Germany;

4. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven and Potsdam, Germany;

5. Leibniz-Institut für Troposphärenforschung, Leipzig, Germany;

6. Physical Sciences Laboratory, National Oceanic and Atmospheric Administration, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado;

7. Institut für Flugführung, Technische Universität Braunschweig, Brunswick, Germany;

8. Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, Germany;

9. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven and Potsdam, and Institut für Mathematik, Universität Potsdam, Potsdam, Germany;

10. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven and Potsdam, and Institut für Umweltphysik, Universität Bremen, Bremen, Germany;

11. Abteilung für Partikelchemie, Max-Planck-Institut für Chemie, Mainz, Germany;

12. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar und Meeresforschung, Bremerhaven and Potsdam, Germany, and A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia;

13. Laboratoire de Météorologie Physique, Université Clermont Auvergne, Auvergne, France;

14. Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität, and Abteilung für Partikelchemie, Max-Planck-Institut für Chemie, Mainz, Germany;

15. Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal;

16. Max-Planck-Institut für Meteorologie, Hamburg, Germany;

17. Zentrum für Marine Umweltwissenschaften, Universität Bremen, Bremen, Germany;

18. Institut für Umweltphysik, Universität Bremen, Bremen, Germany, and National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, Maryland;

19. Finnish Meteorological Institute, Helsinki, Finland;

20. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven and Potsdam, Germany, and Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia;

21. Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, and Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität, Mainz, Germany;

22. Institut für Umweltphysik, Universität Bremen, Bremen, and Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven and Potsdam, Germany;

23. Faculty of Physics, University of Warsaw, Warsaw, Poland;

24. Abteilung für Umweltmeteorologie, Fakultät für Regionale und Umweltwissenschaften, Universität Trier, Trier, Germany

Abstract

Abstract Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric–ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference197 articles.

1. Impact of Atlantic water inflow on winter cyclone activity in the Barents Sea: Insights from coupled regional climate model simulations;Akperov, M.,2020

2. Phytoplankton dynamics in a changing Arctic Ocean;Ardyna, M.,2020

3. Meridional atmospheric heat transport constrained by energetics and mediated by large-scale diffusion;Armour, K. C.,2019

4. On the influence of carbonic acid in the air upon the temperature of the ground;Arrhenius, S.,1896

5. Spatiotemporal variability of solar radiation introduced by clouds over Arctic sea ice;Barrientos-Velasco, C.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3