The Circum-global Transport of Massive African Dust and its Impacts on the Regional Circulation in Remote Atmosphere

Author:

Bi Hongru1,Chen Siyu1,Zhang Daizhou2,Wang Yong3,Kang Litai4,Alam Khan15,Tang Mingjin6,Chen Yu1,Zhang Yue1,Wang Danfeng1

Affiliation:

1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, China

2. Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan

3. Ministry of Education Key Laboratory for Earth System Modeling & Department of Earth System Science, Tsinghua University, Beijing, 100084 China

4. Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA

5. Department of Physics, University of Peshawar, Peshawar 25120, Pakistan.

6. State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

Abstract

Abstract Atmospheric dust from the North Africa, the largest and most persistently active dust source over the world, spreads widely in the Northern Hemisphere and plays essential roles in the Earth environment evolution. During June 7th-24th 2020, an extremely strong dust occurred with its westward spreading modulated by the North Atlantic Oscillation (NAO), and its eastward spreading regulated by European blocking, ultimately resulting in the circum-global transport of African dust. The Mediterranean low pressure linked to the European blocking dipole was the key to facilitating the eastward transport of dust. This record-breaking African dust episode caused a notable diurnal precipitation decrease of 0.98 mm day−1 over northeastern India and decrease of 1.55 mm day−1 over central North America, which was ascribed to the effect of dust-induced radiative heating on large-scale circulation. It triggered Rossby wave train and caused an anomalous high pressure over northeastern India, which weakened the India summer monsoon and consequently inhibited the occurrence of precipitation. Dust-induced radiative heating also supported the stability in the anomalous warm high over North America, further repressing import of moisture from Atlantic. Ambient moisture and atmospheric instability also presented consistent variation over North America and India characterized as strengthen descending motion and sharply reduced moist convection. This study reports, for the first time, the strong modulation of regional circulation by circum-globally transported African dust especially in Asia and North America. The new aspects on the unexpected consequences to moisture convection indicate broader roles that the dust may play in the global climate change.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3