PBL State Estimation with Surface Observations, a Column Model, and an Ensemble Filter

Author:

Hacker Joshua P.1,Rostkier-Edelstein Dorita1

Affiliation:

1. National Center for Atmospheric Research,+ Boulder, Colorado

Abstract

AbstractFollowing recent results showing the potential for using surface observations of temperature, water vapor mixing ratio, and winds to determine PBL profiles, this paper reports on experiments with real observations. A 1D column model with soil, surface-layer, and PBL parameterization schemes that are the same as in the Weather Research and Forecasting model is used to estimate PBL profiles with an ensemble filter. Surface observations over the southern Great Plains are assimilated during the spring and early summer period of 2003. To strictly quantify the utility of the observations for determining PBL profiles in the ensemble filter framework, only climatological information is provided for initialization and forcing. The analysis skill, measured against rawinsondes for an independent verification, is compared against climatology to quantify the influence of the observations. Sensitivity to changing parameterization schemes, and to prescribed values of observation error variance, is examined. Temporal propagation of skillful analyses is also assessed, separating the effects of good prior state estimates from the impact of assimilation at night when covariance is weak. Results show that accurate profiles of temperature, mixing ratio, and winds are estimated with the column model and ensemble filter assimilating only surface observations. Results are largely insensitive to choice of parameterization scheme and specified observation error variance. The effects of using different parameterization schemes within the column model depend on whether assimilation is included, showing the importance of evaluating models within assimilation systems. At night, skillful estimates are possible because the influence of the observations from the previous day is temporally propagated, and atmospheric dynamics in the residual layer operate on slow time scales. It is expected that these profiles will have applications for nowcasting and secondary models (e.g., plume dispersion models) that rely on accurate specification of PBL structure.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference22 articles.

1. An ensemble adjustment Kalman filter for data assimilation.;Anderson;Mon. Wea. Rev.,2001

2. A local least squares framework for ensemble filtering.;Anderson;Mon. Wea. Rev.,2003

3. ARM , 2006: Surface meteorological observation system handbook. Tech. Rep. ARM TR-031, Atmospheric Radiation Measurement Climate Research Facility, U.S. Department of Energy, 28 pp. [Available online at http://www.arm.gov.].

4. Flux parameterization over land surfaces for atmospheric models.;Beljaars;J. Appl. Meteor.,1991

5. Analysis scheme in the ensemble Kalman filter.;Burgers;Mon. Wea. Rev.,1998

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3