Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model

Author:

Burke Eleanor J.1,Brown Simon J.1,Christidis Nikolaos1

Affiliation:

1. Hadley Centre for Climate Prediction and Research, Met Office, Exeter, United Kingdom

Abstract

Abstract Meteorological drought in the Hadley Centre global climate model is assessed using the Palmer Drought Severity Index (PDSI), a commonly used drought index. At interannual time scales, for the majority of the land surface, the model captures the observed relationship between the El Niño–Southern Oscillation and regions of relative wetness and dryness represented by high and low values of the PDSI respectively. At decadal time scales, on a global basis, the model reproduces the observed drying trend (decreasing PDSI) since 1952. An optimal detection analysis shows that there is a significant influence of anthropogenic emissions of greenhouse gasses and sulphate aerosols in the production of this drying trend. On a regional basis, the specific regions of wetting and drying are not always accurately simulated. In this paper, present-day drought events are defined as continuous time periods where the PDSI is less than the 20th percentile of the PDSI distribution between 1952 and 1998 (i.e., on average 20% of the land surface is in drought at any one time). Overall, the model predicts slightly less frequent but longer events than are observed. Future projections of drought in the twenty-first century made using the Special Report on Emissions Scenarios (SRES) A2 emission scenario show regions of strong wetting and drying with a net overall global drying trend. For example, the proportion of the land surface in extreme drought is predicted to increase from 1% for the present day to 30% by the end of the twenty-first century.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3