Transport and Mixing in Kinematic and Dynamically Consistent Flows

Author:

Haynes P. H.1,Poet D. A.1,Shuckburgh E. F.1

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Abstract

Abstract The interplay between dynamics and transport in two-dimensional flows is examined by comparing the transport and mixing in a kinematic flow in which the velocity field is imposed as a given function of time with that in an analogous dynamically consistent flow in which the advected vorticity field controls the flow evolution. In both cases the variation of the transport and mixing behavior with a parameter ε governing the strength of the time dependence is considered. It is shown that dynamical consistency has the effect of (i) postponing the breaking of a central transport barrier as ε increases and (ii) removing the property of the kinematic flow that, for a large range of ε, a weakly permeable central barrier persists. The first effect is associated with the development of a strong vorticity gradient and the associated jet along the central transport barrier. The second effect is associated with the fact that, in the dynamically consistent flow, the breaking of the central barrier is accompanied by a drastic change in the vorticity field and hence in the structure of the flow. The relation between the vorticity field and transport barriers is further examined using a range of simple kinematic and dynamically consistent models. Implications for formulation of predictive models that represent the interactions between dynamics, transport, and mixing (and might be suggested as a basis for parameterizing eddies in flows that form multiple jets) are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3