A Bayesian Approach to Predictor Selection for Seasonal Streamflow Forecasting

Author:

Robertson David E.1,Wang Q. J.1

Affiliation:

1. CSIRO Land and Water, Highett, Victoria, Australia

Abstract

Abstract Statistical methods commonly used for forecasting climate and streamflows require the selection of appropriate predictors. Poorly designed predictor selection procedures can result in poor forecasts for independent events. This paper introduces a predictor selection method for the Bayesian joint probability modeling approach to seasonal streamflow forecasting at multiple sites. The method compares forecasting models using a pseudo-Bayes factor (PsBF). A stepwise expansion of a base model is carried out by including the candidate predictor with the highest PsBF that exceeds a selection threshold. Predictors representing the initial catchment conditions are selected on their ability to forecast streamflows and predictors representing future climate influences are selected on their ability to forecast rainfall. The final forecasting model combines selected predictors representing both initial catchment conditions and future climate influences to jointly forecast seasonal streamflows and rainfall. Applications of the predictor selection method to two catchments in eastern Australia show that the best predictors representing initial catchment conditions and future climate influences vary with location and forecast date. Antecedent streamflows are the best indicator of the initial catchment conditions. Predictors representing future climate influences are only selected for forecasts made between July and January. Indicators of El Niño dominate the selected predictors representing future climate influences. The skill of streamflow forecasts varies considerably between locations and throughout the year. Skill scores for the perennial streams of the Goulburn River catchment exceed 40% for several seasons, while for the intermittent streams in the Burdekin River catchment, the skill scores are lower.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3