Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band. Part II: Evaluation and Application

Author:

Park S-G.1,Maki M.1,Iwanami K.1,Bringi V. N.2,Chandrasekar V.2

Affiliation:

1. National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan

2. Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

Abstract

Abstract In this paper, the attenuation-correction methodology presented in Part I is applied to radar measurements observed by the multiparameter radar at the X-band wavelength (MP-X) of the National Research Institute for Earth Science and Disaster Prevention (NIED), and is evaluated by comparison with scattering simulations using ground-based disdrometer data. Further, effects of attenuation on the estimation of rainfall amounts and drop size distribution parameters are also investigated. The joint variability of the corrected reflectivity and differential reflectivity show good agreement with scattering simulations. In addition, specific attenuation and differential attenuation, which are derived in the correction procedure, show good agreement with scattering simulations. In addition, a composite rainfall-rate algorithm is proposed and evaluated by comparison with eight gauges. The radar-rainfall estimates from the uncorrected (or observed) ZH produce severe underestimation, even at short ranges from the radar and for stratiform rain events. On the contrary, the reflectivity-based rainfall estimates from the attenuation-corrected ZH does not show such severe underestimation and does show better agreement with rain gauge measurements. More accurate rainfall amounts can be obtained from a simple composite algorithm based on specific differential phase KDP, with the R(ZH_cor) estimates being used for low rainfall rates (KDP ≤ 0.3° km−1 or ZH_cor ≤ 35 dBZ). This improvement in accuracy of rainfall estimation based on KDP is a result of the insensitivity of the rainfall algorithm to natural variations of drop size distributions (DSDs). The ZH, ZDR, and KDP data are also used to infer the parameters (median volume diameter D0 and normalized intercept parameter Nw) of a normalized gamma DSD. The retrieval of D0 and Nw from the corrected radar data show good agreement with those from disdrometer data in terms of the respective relative frequency histograms. The results of this study demonstrate that high-quality hydrometeorological information on rain events such as rainfall amounts and DSDs can be derived from X-band polarimetric radars.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3