Investigation of Low-Cloud Characteristics Using Mesoscale Numerical Model Data for Improvement of Fog-Detection Performance by Satellite Remote Sensing

Author:

Ishida Haruma1,Miura Kentaro1,Matsuda Teruaki1,Ogawara Kakuji1,Goto Azumi2,Matsuura Kuniaki2,Sato Yoshiko2,Nakajima Takashi Y.3

Affiliation:

1. Graduate School of Science and Engineering, Yamaguchi University, Ube, Japan

2. Japan Weather Association, Tokyo, Japan

3. Research and Information Center, Tokai University, Tokyo, Japan

Abstract

AbstractThe comprehensive relationship between meteorological conditions and whether low water cloud touches the surface, particularly at sea, is examined with the goal of improving low-cloud detection by satellite. Gridpoint-value data provided by an operational mesoscale model with integration of Multifunction Transport Satellite-2 data can provide sufficient data for statistical analyses to find general parameters that can discern whether low clouds touch the surface, compensating for uncertainty due to the scarcity of observation sites at sea and the infrequent incidence of fog. The analyses reveal that surface-touching low clouds tend to have lower cloud-top heights than those not touching the surface, although the frequency distribution of cloud-top height differs by season. The bottom of the Γ > Γm layer (where Γ and Γm are the vertical gradient and the moist-adiabatic lapse rate of the potential temperature, respectively) with surface-touching low-cloud layers tends to be very low or almost attached to the surface. In contrast, the tops of low-cloud layers not touching the surface tend to occur near the bottom of the Γ > Γm layer. Mechanisms to correlate these meteorological conditions with whether low clouds touch the surface are inferred from investigations into the vertical structure of equivalent potential temperature. These results indicate that the temperature difference between cloud-top height and the surface can be an appropriate parameter to infer whether low clouds touch the surface. It is also suggested that only a little addition of meteorological ancillary data, such as the forecast sea surface temperature, to satellite data allows successful performance of the discrimination.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3