Estimating the Bowen Ratio for Application in Air Quality Models by Integrating a Simplified Analytical Expression with Measurement Data

Author:

Lin K. M.1,Juang J. Y.2,Shiu Y.-W.1,Chang L. F. W.1

Affiliation:

1. Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan

2. Department of Geography, National Taiwan University, Taipei, Taiwan

Abstract

AbstractIn air quality models, daytime sensible and latent heat fluxes are important factors that influence atmospheric stability. These heat fluxes originate from heat that is generated from solar radiation and is then released from the earth’s surface. Different climates and surface conditions may lead to varying heat flux distributions. Because latent heat flux is influenced by both solar radiation and plant evapotranspiration, it is often difficult to estimate. The objective of this study was to apply thermodynamic concepts to determine an equation that could be used to estimate the Bowen ratio in the absence of latent and sensible heat fluxes. This study showed that, using two meteorological parameters (i.e., absolute temperature and relative humidity), the Bowen ratio for the climate in Taiwan could be obtained and then used to estimate sensible and latent heat fluxes in a series of equations. Furthermore, the approach’s applicability was determined by testing the sensitivities of parameters used in the Bowen ratio equation. A comparison of results determined through the Priestly–Taylor and Penman–Monteith methods with meteorological data for Yilan and Chiayi counties, Taiwan, for the 2006 summer and winter is performed. The results of this study showed that, among the simulated latent heat fluxes in the two study areas, the values estimated using the Penman–Monteith method were the largest, followed by those estimated using the Priestly–Taylor method. Values estimated using the Bowen ratio method were the smallest. Predictions generated by the proposed Bowen ratio equation correlated with those generated by the other models; however, the values estimated with the Priestly–Taylor method were closest to the simulated values.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3