Cirrus Cloud Properties and the Large-Scale Meteorological Environment: Relationships Derived from A-Train and NCEP–NCAR Reanalysis Data

Author:

Berry Elizabeth,Mace Gerald G.

Abstract

AbstractEmpirical knowledge of how cirrus cloud properties are coupled with the large-scale meteorological environment is a prerequisite for understanding the role of microphysical processes in the life cycle of cirrus cloud systems. Using active and passive remote sensing data from the A-Train, relationships between cirrus cloud properties and the large-scale dynamics are examined. Mesoscale cirrus events from along the A-Train track from 1 yr of data are sorted on the basis of vertical distributions of radar reflectivity and on large-scale meteorological parameters derived from the NCEP–NCAR reanalysis using a K-means cluster-analysis algorithm. With these defined regimes, the authors examine two questions: Given a cirrus cloud type defined by cloud properties, what are the large-scale dynamics? Vice versa, what cirrus cloud properties tend to emerge from large-scale dynamics regimes that tend to form cirrus? From the answers to these questions, the links between the large-scale dynamics regimes and the genre of cirrus that evolve within these regimes are identified. It is found that, to a considerable extent, the large-scale environment determines the bulk cirrus properties and that, within the dynamics regimes, cirrus cloud systems tend to evolve through life cycles, the details of which are not necessarily explained by the large-scale motions alone. These results suggest that, while simple relationships may be used to parameterize the gross properties of cirrus, more sophisticated parameterizations are required for representing the detailed structure and radiative feedbacks of these clouds.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3