Meteorological Downscaling with WRF Model, Version 4.0, and Comparative Evaluation of Planetary Boundary Layer Schemes over a Complex Coastal Airshed

Author:

Onwukwe Chibuike1,Jackson Peter L.1

Affiliation:

1. Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, British Columbia, Canada

Abstract

AbstractEvaluation of downscaled meteorological information is crucial to identifying model behaviors that may propagate to end applications such as the simulation of local air quality. This study conducted and assessed yearlong simulations of hourly meteorological conditions over the Terrace–Kitimat Valley of northwestern British Columbia, Canada, at 1-km horizontal gridding for six PBL schemes in the Weather and Forecasting (WRF) Model, version 4.0. In terms of key surface meteorological variables that affect air quality, simulations over land demonstrated better skill for specific humidity and wind direction than for air temperature and wind speed. Spatial differences in modeled atmospheric properties and vertical profiles, especially for moisture content, were used to diagnose the relative capacity of each PBL scheme to represent pollutant dispersion and dilution. Stable conditions at night increased suppression of boundary layer mixing by the nonlocal Yonsei University (YSU) scheme when compared with suppression by the local eddy-diffusion component of the Asymmetric Convective Model, version 2 (ACM2), scheme, resulting in decreased wind speed and ambient temperature but moister air with the YSU scheme. The weakening of mixing by the Mellor–Yamada–Nakanishi–Niino (MYNN3) scheme with inland distance suggested that higher-order, nonlocal transport is sensitive to increasing topographic steepness toward the northern part of the valley. Disparities in mixing strengths among PBL schemes were greater in the summer when conditions were generally less stable with moist, warm air blowing inland than in winter when the valley channels cold, stable air from the interior. Increased convection in daytime led to greater entrainment of air from aloft and a thicker PBL with the YSU scheme than with the ACM2 scheme in summer while increasing countergradient transport in the MYNN3 scheme that reduces dilution.

Funder

Natural Sciences and Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3