Environmental Analysis of GOES-R Proving Ground Convection-Initiation Forecasting Algorithms

Author:

Apke Jason M.1,Nietfeld Daniel2,Anderson Mark R.3

Affiliation:

1. Atmospheric Sciences Department, University of Alabama in Huntsville, Huntsville, Alabama

2. NOAA/National Weather Service Weather Forecast Office Omaha/Valley, Valley, Nebraska

3. Department of Earth and Atmospheric Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska

Abstract

AbstractEnhanced temporal and spatial resolution of the Geostationary Operational Environmental Satellite–R Series (GOES-R) will allow for the use of cloud-top-cooling-based convection-initiation (CI) forecasting algorithms. Two such algorithms have been created on the current generation of GOES: the University of Wisconsin cloud-top-cooling algorithm (UWCTC) and the University of Alabama in Huntsville’s satellite convection analysis and tracking algorithm (SATCAST). Preliminary analyses of algorithm products have led to speculation over preconvective environmental influences on algorithm performance. An objective validation approach is developed to separate algorithm products into positive and false indications. Seventeen preconvective environmental variables are examined for the positive and false indications to improve algorithm output. The total dataset consists of two time periods in the late convective season of 2012 and the early convective season of 2013. Data are examined for environmental relationships using principal component analysis (PCA) and quadratic discriminant analysis (QDA). Data fusion by QDA is tested for SATCAST and UWCTC on five separate case-study days to determine whether application of environmental variables improves satellite-based CI forecasting. PCA and significance testing revealed that positive indications favored environments with greater vertically integrated instability (CAPE), less stability (CIN), and more low-level convergence. QDA improved both algorithms on all five case studies using significantly different variables. This study provides an examination of environmental influences on the performance of GOES-R Proving Ground CI forecasting algorithms and shows that integration of QDA in the cloud-top-cooling-based algorithms using environmental variables will ultimately generate a more skillful product.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3