Modeling and Interpretation of S-Band Ice Crystal Depolarization Signatures from Data Obtained by Simultaneously Transmitting Horizontally and Vertically Polarized Fields

Author:

Hubbert J. C.1,Ellis S. M.1,Chang W.-Y.1,Rutledge S.2,Dixon M.1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

2. Colorado State University, Fort Collins, Colorado

Abstract

AbstractData collected by the National Center for Atmospheric Research S-band polarimetric radar (S-Pol) during the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX) in Taiwan are analyzed and used to infer storm microphysics in the ice phase of convective storms. Both simultaneous horizontal (H) and vertical (V) (SHV) transmit polarization data and fast-alternating H and V (FHV) transmit polarization data are used in the analysis. The SHV Zdr (differential reflectivity) data show radial stripes of biased data in the ice phase that are likely caused by aligned and canted ice crystals. Similar radial streaks in the linear depolarization ratio (LDR) are presented that are also biased by the same mechanism. Dual-Doppler synthesis and sounding data characterize the storm environment and support the inferences concerning the ice particle types. Small convective cells were observed to have both large positive and large negative Kdp (specific differential phase) values. Negative Kdp regions suggest that ice crystals are vertically aligned by electric fields. Since high |Kdp| values of 0.8° km−1 in both negative and positive Kdp regions in the ice phase are accompanied by Zdr values close to 0 dB, it is inferred that there are two types of ice crystals present: 1) smaller aligned ice crystals that cause the Kdp signatures and 2) larger aggregates or graupel that cause the Zdr signatures. The inferences are supported with simulated ice particle scattering calculations. A radar scattering model is used to explain the anomalous radial streaks in SHV and LDR.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3