Wind-Blown Dust Modeling Using a Backward-Lagrangian Particle Dispersion Model

Author:

Mallia Derek V.1,Kochanski Adam1,Wu Dien1,Pennell Chris2,Oswald Whitney2,Lin John C.1

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

2. Utah Department of Environmental Quality, Salt Lake City, Utah

Abstract

AbstractPresented here is a new dust modeling framework that uses a backward-Lagrangian particle dispersion model coupled with a dust emission model, both driven by meteorological data from the Weather Research and Forecasting (WRF) Model. This new modeling framework was tested for the spring of 2010 at multiple sites across northern Utah. Initial model results for March–April 2010 showed that the model was able to replicate the 27–28 April 2010 dust event; however, it was unable to reproduce a significant wind-blown dust event on 30 March 2010. During this event, the model significantly underestimated PM2.5 concentrations (4.7 vs 38.7 μg m−3) along the Wasatch Front. The backward-Lagrangian approach presented here allowed for the easy identification of dust source regions with misrepresented land cover and soil types, which required an update to WRF. In addition, changes were also applied to the dust emission model to better account for dust emitted from dry lake basins. These updates significantly improved dust model simulations, with the modeled PM2.5 comparing much more favorably to observations (average of 30.3 μg m−3). In addition, these updates also improved the timing of the frontal passage within WRF. The dust model was also applied in a forecasting setting, with the model able to replicate the magnitude of a large dust event, albeit with a 2-h lag. These results suggest that the dust modeling framework presented here has potential to replicate past dust events, identify source regions of dust, and be used for short-term forecasting applications.

Funder

Utah Department of Environmental Quality

Friend of Great Salt Lake

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3