Statistical Weather-Impact Models: An Application of Neural Networks and Mixed Effects for Corn Production over the United States

Author:

Mathieu Jordane A.1,Aires Filipe1

Affiliation:

1. Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmospheres, and Estellus, Paris, France

Abstract

AbstractStatistical meteorological impact models are intended to represent the impact of weather on socioeconomic activities, using a statistical approach. The calibration of such models is difficult because relationships are complex and historical records are limited. Often, such models succeed in reproducing past data but perform poorly on unseen new data (a problem known as overfitting). This difficulty emphasizes the need for regularization techniques and reliable assessment of the model quality. This study illustrates, in a general way, how to extract pertinent information from weather data and exploit it in impact models that are designed to help decision-making. For a given socioeconomic activity, this type of impact model can be used to 1) study its sensitivity to weather anomalies (e.g., corn sensitivity to water stress), 2) perform seasonal forecasting (yield forecasting) for it, and 3) quantify the longer-term (several decades) impact of weather on it. The size of the training database can be increased by pooling data from various locations, but this requires statistical models that are able to use the localization information—for example, mixed-effect (ME) models. Linear, neural-network, and ME models are compared, using a real-world application: corn-yield forecasting over the United States. Many challenges faced in this paper may be encountered in many weather-impact analyses: these results show that much care is required when using space–time data because they are often highly spatially correlated. In addition, the forecast quality is strongly influenced by the training spatial scale. For the application that is described herein, learning at the state scale is a good trade-off: it is specific to local conditions while keeping enough data for the calibration.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3