Impact of Afternoon Thunderstorms on the Land–Sea Breeze in the Taipei Basin during Summer: An Experiment

Author:

Chen Tsing-Chang1,Yen Ming-Cheng2,Tsay Jenq-Dar1,Liao Chi-Chang3,Takle Eugene S.4

Affiliation:

1. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

2. Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan

3. Department of Environmental Information and Engineering, Chung-Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan

4. Department of Geological and Atmospheric Sciences, and Department of Agronomy, Iowa State University, Ames, Iowa

Abstract

AbstractEnvironmental conditions for the roughly three million people living in the Taipei basin of Taiwan are greatly affected by the land–sea breeze and afternoon thunderstorm activities. A new perspective on the land–sea breeze life cycle and how it is affected by afternoon thunderstorm activity in the Taipei basin during the dry season is provided. During the summer monsoon break–revival phase, about 75% of rainfall in the Taipei basin is produced by afternoon thunderstorms triggered by sea-breeze interactions with the mountains to the south of this basin. Because the basic characteristics of the land–sea breeze and the changes it undergoes through the influence of afternoon thunderstorms have not been comprehensively analyzed/documented, a mini–field experiment was conducted during the summers of 2004 and 2005 to explore these aspects of the land–sea breeze in this basin. Thunderstorm rainfall is found to change not only the basin’s land–sea-breeze life cycle, but also its ventilation mechanism. On the nonthunderstorm day, the sea breeze supplies the open-sea fresh air for about 8 h during the daytime, but the land breeze persists on the thunderstorm day from afternoon to the next morning, acting to sweep polluted urban air out of the basin.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3