Author:
Hicks Bruce B.,Callahan William J.,Pendergrass William R.,Dobosy Ronald J.,Novakovskaia Elena
Abstract
AbstractThe utility of aggregating data from near-surface meteorological networks for initiating dispersion models is examined by using data from the “WeatherBug” network that is operated by Earth Networks, Inc. WeatherBug instruments are typically mounted 2–3 m above the eaves of buildings and thus are more representative of the immediate surroundings than of conditions over the broader area. This study focuses on subnetworks of WeatherBug sites that are within circles of varying radius about selected stations of the DCNet program. DCNet is a Washington, D.C., research program of the NOAA Air Resources Laboratory. The aggregation of data within varying-sized circles of 3–10-km radius yields average velocities and velocity-component standard deviations that are largely independent of the number of stations reporting—provided that number exceeds about 10. Given this finding, variances of wind components are aggregated from arrays of WeatherBug stations within a 5-km radius of selected central DCNet locations, with on average 11 WeatherBug stations per array. The total variance of wind components from the surface (WeatherBug) subnetworks is taken to be the sum of two parts: the temporal variance is the average of the conventional wind-component variances at each site and the spatial variance is based on the velocity-component averages of the individual sites. These two variances (and the standard deviations derived from them) are found to be similar. Moreover, the total wind-component variance is comparable to that observed at the DCNet reference stations. The near-surface rooftop wind velocities are about 35% of the magnitudes of the DCNet measurements. Limited additional data indicate that these results can be extended to New York City.
Publisher
American Meteorological Society
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献