Modeling of the Denebulization of Warm Fogs by Hygroscopic Seeding: Effect of Various Operating Conditions and of the Turbulence Intensity

Author:

Reuge N.1,Fede P.1,Berthoumieu J.-F.2,Foucoin F.3,Simonin O.1

Affiliation:

1. Institut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

2. ACMG Agralis Services, Le Passage, France

3. Etienne Lacroix, Muret, France

Abstract

AbstractThis study addresses the modeling of the denebulization (i.e., the removal of droplets) of warm fogs (T ≥ 0°C) by hygroscopic salt microparticles from the initial seeding at the top of the fog layer to the fall of the rain droplets on the ground. Two main phenomena can occur: condensation of water vapor on salted droplets and the concomitant evaporation of fog droplets, and coalescence between the salted droplets and the fog droplets. Three salts have been investigated: NaCl, CaCl2, and KCl. Based on the conservation equations, the modeling approach (1D) considers the hygroscopicity of the salts through the water activity in the aqueous solution and the coalescence induced by gravity and turbulence. From this study, NaCl is the most efficient salt in the tested operating conditions. Actually, this result can be explained by the strong hygroscopicity of this salt in very dilute solutions. From the calculations, 15 kg of NaCl particles of 6.7-μm diameter can dissipate a typical fog layer of 40 m in height within less than 17 min over 0.25 km2. According to the calculations, a fog layer of 100 m in height can be denebulized within 45 min. The contribution of the coalescence induced by gravity and by turbulence seems to have a negligible effect on the final horizontal visibility, the condensation/evaporation phenomena being preponderant for these operating conditions.

Funder

Bpifrance

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3