Clouds over the Southern Ocean as Observed from the R/V Investigator during CAPRICORN. Part I: Cloud Occurrence and Phase Partitioning

Author:

Mace Gerald G.1,Protat Alain2

Affiliation:

1. Department of Atmospheric Science, University of Utah, Salt Lake City, Utah

2. Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Abstract

AbstractThe properties of clouds derived using a suite of remote sensors on board the Australian research vessel (R/V) Investigator during the 5-week Clouds, Aerosols, Precipitation, Radiation, and Atmospheric Composition over the Southern Ocean (CAPRICORN) voyage south of Australia during March and April 2016 are examined and compared to similar measurements collected by CloudSat and CALIPSO (CC) and from data collected at Graciosa Island, Azores (GRW). In addition, we use depolarization lidar data to examine the thermodynamic phase partitioning as a function of temperature and compare those statistics to similar information reported from the CALIPSO lidar in low-Earth orbit. We find that cloud cover during CAPRICORN was 76%, dominated by clouds based in the marine boundary layer. This was lower than comparable measurements collected by CC during these months, although the CC dataset observed significantly more high clouds. In the surface-based data, approximately 2/3 (1/2) of all low-level layers observed had a reflectivity below −20 dBZ in the CAPRICORN data (GRW) with 30% (20%) of the layers observed only by the lidar. The phase partitioning in layers based in the lower 4 km of the atmosphere was similar in the two surface-based datasets, indicating a greater occurrence of the ice phase in subfreezing low clouds than what is reported from analysis of CALIPSO data.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3