Affiliation:
1. Science Systems Applications, Inc., Hampton, Virginia
2. Science Directorate, NASA Langley Research Center, Hampton, Virginia
Abstract
AbstractFive years of measurements from the Earth Radiation Budget Satellite (ERBS) have been analyzed to define the diurnal cycle of albedo from 55°N to 55°S. The ERBS precesses through all local times every 72 days so as to provide data regarding the diurnal cycles for Earth radiation. Albedo together with insolation at the top of the atmosphere is used to compute the heating of the Earth–atmosphere system; thus its diurnal cycle is important in the energetics of the climate system. A principal component (PC) analysis of the diurnal variation of top-of-atmosphere albedo using these data is presented. The analysis is done separately for ocean and land because of the marked differences of cloud behavior over ocean and over land. For ocean, 90%–92% of the variance in the diurnal cycle is described by a single component; for land, the first PC accounts for 83%–89% of the variance. Some of the variation is due to the increase of albedo with increasing solar zenith angle, which is taken into account in the ERBS data processing by a directional model, and some is due to the diurnal cycle of cloudiness. The second PC describes 2%–4% of the variance for ocean and 5% for land, and it is primarily due to variations of cloudiness throughout the day, which are asymmetric about noon. These terms show the response of the atmosphere to the cycle of solar heating. The third PC for ocean is a two-peaked curve, and the associated map shows high values in cloudy regions.
Publisher
American Meteorological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献