Toward an Operational Land Surface Temperature Algorithm for GOES

Author:

Sun Donglian,Yu Yunyue,Fang Li,Liu Yuling

Abstract

AbstractFor most land surface temperature (LST) regression algorithms, a set of optimized coefficients is determined by manual separation of the different subdivisions of atmospheric and surface conditions. In this study, a machine-learning technique, the regression tree (RT) technique, is introduced with the aim of automatically finding these subranges and the thresholds for the stratification of regression coefficients. The use of RT techniques in LST retrieval has the potential to contribute to the determination of optimal regression relationships under different conditions. Because of the lack of split-window channels for the Geostationary Operational Environmental Satellite (GOES) M–Q series (GOES-12GOES-15, plus GOES-Q), a dual-window LST algorithm was developed by combining the infrared 11-μm channel with the shortwave-infrared (SWIR) 3.9-μm channel, which presents lower atmospheric absorption than does the infrared split-window channels (11 and 12 μm). The RT technique was introduced to derive the regression models under different conditions. The algorithms were used to derive the LST product from GOES observations and were evaluated against the 2004 Surface Radiation budget network. The results indicate that the RT technique outperforms the traditional regression method.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3