Spatial Coverage of Monitoring Networks: A Climate Observing System Simulation Experiment

Author:

Weatherhead Elizabeth C.1,Bodeker Greg E.2,Fassò Alessandro3,Chang Kai-Lan4,Lazo Jeffrey K.5,Clack C. T. M.6,Hurst Dale F.47,Hassler Birgit2,English Jason M.18,Yorgun Soner9

Affiliation:

1. a University of Colorado Boulder, Boulder, Colorado

2. b Bodeker Scientific, Alexandra, New Zealand

3. c University of Bergamo, Bergamo, Italy

4. d Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

5. e National Center for Atmospheric Research,j Boulder, Colorado

6. f Vibrant Clean Energy, Boulder, Colorado

7. g NOAA/ESRL/Global Monitoring Division, Boulder, Colorado

8. h NOAA/ESRL/Global Systems Division, Boulder, Colorado

9. i Monash University, Clayton, Victoria, Australia

Abstract

AbstractObserving systems consisting of a finite number of in situ monitoring stations can provide high-quality measurements with the ability to quality assure both the instruments and the data but offer limited information over larger geographic areas. This paper quantifies the spatial coverage represented by a finite set of monitoring stations by using global data—data that are possibly of lower resolution and quality. For illustration purposes, merged satellite temperature data from Microwave Sounding Units are used to estimate the representativeness of the Global Climate Observing System Reference Upper-Air Network (GRUAN). While many metrics exist for evaluating the representativeness of a site, the ability to have highly accurate monthly averaged data is essential for both trend detection and climatology evaluation. The calculated correlations of the monthly averaged upper-troposphere satellite-derived temperatures over the GRUAN stations with all other pixels around the globe show that the current 9 certified GRUAN stations have moderate correlations (r ≥ 0.7) for approximately 10% of the earth, but an expanded network incorporating another 15 stations would result in moderate correlations for just over 60% of the earth. This analysis indicates that the value of additional stations can be quantified by using historical, satellite, or model data and can be used to reveal critical gaps in current monitoring capabilities. Evaluating the value of potential additional stations and prioritizing their initiation can optimize networks. The expansion of networks can be evaluated in a manner that allows for optimal benefit on the basis of optimization theory and economic analyses.

Funder

National Oceanic and Atmospheric Administration

Horizon 2020

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3