Spatial and Temporal Variability of Rainfall in the Alps–Mediterranean Euroregion

Author:

Rysman Jean-François1,Lemaître Yvon1,Moreau Emmanuel2

Affiliation:

1. Université Pierre-et-Marie-Curie University of Paris 06, Paris, Université Versailles St-Quentin, Versailles, and CNRS/INSU, Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre-Simon Laplace, Guyancourt, France

2. Novimet, Guyancourt, France

Abstract

AbstractThis study describes the main patterns of rainfall distribution in the Alps–Mediterranean “Euroregion” using a ground radar and characterizes the associated processes using model output. The radar dataset spans 2009–12 with fine spatial (1 km) and temporal (5 min) resolutions. The most significant rain accumulations were observed in 2009 and 2010, and the most intense extreme events occurred in 2010. Conversely, 2012 was a dry year. Model output revealed that the wind shear, the pressure, and the meridional wind at low level were the three main factors explaining the rainfall variability between 2009 and 2012. At the monthly scale, the maximum of rain accumulation was observed in November along the coast. Results also showed that the most intense rain rates were observed during early summer and autumn in the “Pre-Alps.” The monthly variability was characterized by a displacement of extreme rain events from land to sea from late spring to winter. Correlation analyses showed that this displacement was essentially controlled by the convective available potential energy (CAPE). Rainfall showed a diurnal variability from April to August for the land areas of the Alps–Mediterranean Euroregion. The diurnal variability was significant during the spring and summer months, with maximal rain intensity between 1600 and 1800 UTC. The correlation of the rainfall with CAPE showed that this cycle was related to atmospheric instability. A secondary peak in average rain rate was observed during the early morning and was likely triggered by land breezes. The results highlighted that rainfall characteristics are extremely diverse in terms of intensity and distribution in this relatively small region.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3