Implications of a Climate-Changed Atmosphere on Cool-Climate Viticulture

Author:

Schultze Steven R.1,Sabbatini Paolo2

Affiliation:

1. Department of Geography, Department of Earth Sciences, University of South Alabama, Mobile, Alabama

2. Department of Horticulture, Michigan State University, East Lansing, Michigan

Abstract

AbstractThe impact of anthropogenic global warming on viticulture has been thoroughly studied. However, many of the climate projections are limited by the resolution of the models that cannot resolve mesoscale weather patterns, which heavily influence grape production. In this work, data were gathered from the National Center for Atmospheric Research wherein a high-spatiotemporal-resolution (4 km× 4 km, 1 h) Weather Research and Forecasting (WRF) Model was run from October 2000 to September 2013 over North America using observed data, and again using the atmospheric chemistry of CMIP5 ensemble mean of the RCP8.5 greenhouse gas emission scenario, creating a pseudo–global warming (PGW) model. Such models are capable of resolving the mesoscale influences that most climate models cannot. Contrasting the observed results to the PGW results allows users to compare “what happened” to “what could have happened.” This analysis was applied to four cool-climate viticultural regions in the United States: two in Michigan, one in upstate New York, and one in Oregon. In the PGW run, hours exposed to extreme heat (>32°C) increase by orders of magnitude. Growing season degree-day (GDD) accumulations increase between 783 and 1057 base 10°C in comparing the models, while growing season average temperatures increase between 4.05° and 5.53°C. Precipitation patterns were also studied. The four regions would no longer classify as “cool climate” and would see growing seasons similar to some of the most productive warm-climate wine-producing regions. The authors consider the opportunities and challenges presented by the potential climate shift for cool-climate and warm-climate viticultural regions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3