Modeling Solar Irradiance and Solar PV Power Output to Create a Resource Assessment Using Linear Multiple Multivariate Regression

Author:

Clack Christopher T. M.1

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Abstract

AbstractThe increased use of solar photovoltaic (PV) cells as energy sources on electric grids has created the need for more accessible solar irradiance and power production estimates for use in power modeling software. In the present paper, a novel technique for creating solar irradiance estimates is introduced. A solar PV resource dataset created by combining numerical weather prediction assimilation model variables, satellite data, and high-resolution ground-based measurements is also presented. The dataset contains ≈152 000 geographic locations each with ≈26 000 hourly time steps. The solar irradiance outputs are global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance (DIF). The technique is developed over the United States by training a linear multiple multivariate regression scheme at 10 locations. The technique is then applied to independent locations over the whole geographic domain. The irradiance estimates are input into a solar PV power modeling algorithm to compute solar PV power estimates for every 13-km grid cell. The dataset is analyzed to predict the capacity factors for solar resource sites around the United States for 2006–08. Statistics are shown to validate the skill of the scheme at geographic sites independent of the training set. In addition, it is shown that more high-quality, geographically dispersed, observation sites increase the skill of the scheme.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3