Synoptic and Large-Scale Determinants of Extreme Austral Frost Events

Author:

Risbey James S.1,Monselesan Didier P.1,O’Kane Terence J.1,Tozer Carly R.1,Pook Michael J.1,Hayman Peter T.2

Affiliation:

1. CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

2. South Australian Research and Development Institute, Urrbrae, South Australia, Australia

Abstract

AbstractWe define and examine extreme frost events at three station locations across southern Australia. A synoptic assessment of the events shows that they are generally characterized by passage of a front or trough followed by a developing blocking high. Frost typically occurs at the leading edge of the block. The very cold air pool leading to the frost event is the result of descent of cold, dry midtropospheric air parcels from regions poleward of the station. The air is exceptionally cold because it is advected across the strong meridional temperature gradients in the storm track. The air is dry because this equatorward meridional pathway requires descent and so must have origins well above the surface in the dryer midtroposphere. The position of the block and location of the dry descent are dynamically determined by large-scale waveguide modes in the polar jet waveguide. The role of the waveguide modes is deduced from composites of midtropospheric flow anomalies over the days preceding and after the frost events. These show organized wavenumber 3 or 4 wave trains, with the block associated with the frost formed as a node of the wave train. The wave trains resemble known waveguide modes such as the Pacific–South America mode, and the frost event projects clearly onto these modes during their life cycle. The strong interannual and decadal variability of extreme frost events at a location can be understood in light of event dependence on organized waveguide modes.

Funder

Grain Research and Development Corporation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3